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Abstract

Researchers consider at least two alternative explanations for the observation of rounded an-

swers and heaping in survey data: task complexity and uncertainty. Subjects may reduce the

complexity of answering open-ended numerical survey questions by providing a satisfactory

but imperfect response. However, heaping may also be the consequence of participants’ under-

lying uncertainty about their answers to the survey question. We provide novel experimental

evidence that complexity and uncertainty causes heaping using data from two inflation fore-

casting experiments that collected more approximately 20,000 incentivized, individually-linked

measures of inflation forecasts and forecast uncertainty. We document a highly significant

relationship between rounded forecasts and forecast uncertainty at the individual level, which

remains even after controlling for demographics and measures of economic literacy.
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1 Introduction

This study investigates a phenomenon often observed in responses to open-ended, quanti-

tative survey questions: the heaping of responses at rounded or salient numbers, defined as

‘satisficing’ by Simon (1956). Existing literature predominantly attributes satisficing to task

complexity, where heaping arises due to the adoption of heuristics where respondents opt for

a ’good enough’ answer when precision seems costly. Our research explores an alternative

explanation for respondents’ satisficing – subjective uncertainty about their own forecasts.

We elucidate the distinction between these two sources of satisficing using a simple frame-

work, introduced by Krosnick (1991), that links the probability of satisficing to person i’s

expected task difficulty (Dτ,i), motivation (Mi), and ability (Ai):

P (Person i satisficing in task τ) =
Dτ,i

Mi × Ai

(1)

Within this framework, there is no explicit role for uncertainty as an explanation for satisfic-

ing. Suppose instead that we treat Dτ,i as a composite term capturing both the uncertainty

and the complexity associated with answering a question so that Dτ,i = Uτ,i + Cτ,i.

We delineate how complexity and uncertainty lead to satisficing with two simple examples.

First, consider a survey task that requires respondents to calculate the exact number of

seconds in a year without any aids. The inherent complexity of this calculation, involving

extensive arithmetic and memory recall, may prompt respondents to opt for a ’good enough’

rounded answer, like ’about 30 million seconds’, instead of the precise figure (31,536,000

seconds). This illustrates how complexity (Cτ,i) can lead to satisficing: respondents under-

stand the task but deem the effort for precision disproportionate to the benefit. What about

uncertainty? Consider a survey asking respondents to estimate the average gas price per

gallon in their city over the next month. While respondents might be aware that gas prices

took on a range of values in the recent past — say, $3.15 to $3.85 — the exact average price

for gas in the following month is uncertain due to market forces and daily price fluctuations.

In such cases, respondents are likely to satisfice by rounding their estimates to a figure that

seems reasonable, such as ’about $3.50 per gallon,’ rather than attempting an implausibly

precise calculation like ‘$3.43’ or ‘$3.57’. Rounded answers may reflect uncertainty inherent

in a question rather than the simplification of a complex calculation.1

1There is also likely a relationship between Ai, and i’s perception of Uτ,i, Cτ,i, but we leave that aside for



In this paper, we disentangle the roles played by task complexity and uncertainty in heaping

using data from two different forecasting experiments–comprising thousands of participants

and around 20,000 decisions–that produced incentivized, individually linked point and range

forecasts of future inflation. We achieve exogenous variation in uncertainty and complex-

ity via variation in central bank communication provided to subjects during the inflation

forecasting task. First, we show that an isolated change in task complexity leads to a quan-

titatively significant increase in the likelihood of rounding. Second, we demonstrate that an

isolated change in uncertainty causes an increase the likelihood of rounding, thereby provid-

ing novel evidence in support of the uncertainty interpretation (i.e. the importance of Uτ,i as

a component of Dτ,i) of rounded answers to open-ended, quantitative questions.2 Crucially,

we do this without relying on distributional assumptions or structural choices. This relation-

ship holds even after controlling for demographics and economic literacy, further confirming

the role of uncertainty as a statistically and quantitatively significant driver of satisficing

that is orthogonal to task complexity.

The concept of satisficing, grounded in task complexity, has been extensively discussed in

various scientific fields. It is argued that heaping at round numbers occurs as subjects employ

satisficing as a heuristic to reduce cognitive complexity (Krosnick et al. 1996, Krosnick 1999,

Gideon et al. 2017). This theory has been influential in psychology Oppenheimer et al.

(2009), Mertens (2019), economics Caplin et al. (2011), Artinger et al. (2022), Da Silveira

and Lima (2022), and higher education research Barge and Gehlbach (2012).

Another popular interpretation of this phenomenon is that rounding in survey responses

indicates underlying uncertainty. The idea is that respondents are simply uncertain about

their answer to a question, even one they have carefully considered. Binder (2017) sum-

marizes this literature and introduces a now widely adopted method for quantifying the

uncertainty underlying round responses in economic surveys. This idea plays a particularly

important role in economics, where macroeconomists are increasingly relying on surveys of

households, firms, and professional forecasters to study economic expectations.3 Our study

seeks to contribute to this discourse by empirically investigating the uncertainty dimension

of satisficing.

now.
2For other examples of recent work on the role of complexity in decision making, see Oprea (2020),

Banovetz and Oprea (2023), Gabaix and Graeber (2023) or Arrieta and Nielsen (2023) for recent work
regarding task complexity and decision-making.

3See Fuster and Zafar (2022) for a recent review of this literature.
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Our results align with the limited experimental evidence on the relationship between round-

ing and uncertainty. Ruud et al. (2014) exogenously induces aggregate uncertainty by varying

the difficulty of solving a color detection task and shows that solutions include more heap-

ing whenever the task is more difficult. In the framework discussed above, this is akin to

assuming Dτ,i ≡ Uτ,i ≡ Cτ,i. Huttenlocher et al. (1990) show that asking respondents to

recall the date of an event leads to heaping around salient timelines (7 days, 14 days, 30

days, etc.) and that this behavior increases for events more distant in the past. Khaw et al.

(2017) show in a laboratory experiment where subjects must predict the probability of a

binary outcome that subjects prefer to report round number probabilities even at the cost

of exerting additional effort.

Our experiments are different from these in a few meaningful ways. First, our experiments

collect linked, incentivized measures of both a point forecast and the corresponding forecast

uncertainty, enabling us to study the effects of individual-level uncertainty on rounding.

Second, we study a setting where subjects are predicting the future state of a complex

dynamical system (i.e. inflation) so that experimental variation in uncertainty does not

derive from variation in task complexity as in Ruud et al. (2014) or depend upon memory

as in Huttenlocher et al. (1990).

The rest of the paper is organized as follows: Section 2 provides an overview of our experi-

mental designs, Section 3 details our results, and Section 4 provides a brief discussion.

2 Experimental Design

This section summarizes the three different forecasting experiments used to collect our data.

First, we use data from a series of learning-to-forecast experiments (LtFEs) wherein partic-

ipants provide both point and range forecasts,where the range forecast represents forecast

uncertainty, of inflation in experimental economies that evolve endogenously according to

those expectations. We refer to this data as RPU data. We also use data from an in-

flation forecasting task where subjects provide point and range forecasts of an exogenous

inflation process. We call this data our MRC data. We next provide a brief overview of the

experiments that generated our RPU and MRC data.
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2.1 RPU

RPU data is from Rholes and Petersen (2021) and Petersen and Rholes (2022), which both

study the role of higher-order information in central bank forecasts. The design used in both

experiments produces rich panel data, which allows us to try and disentangle the effects of

uncertainty and cognitive complexity on rounding. Overall, the combined data from these

experiments consists of 17,328 decisions from 584 unique subjects collected from October

2019 through October 2020 in a series of 54 experimental sessions conducted both online

and in a physical laboratory.

Participants in both RPU experiments acted as inflation forecasters tasked with providing

incentivized inflation forecasts in period t for periods t+1 and t+2 in experimental economies

that evolved endogenously. In addition to point forecasts of inflation, subjects also provided

incentivized measures in each period t of their subjective forecast uncertainty for both fore-

cast horizons. We incentivized subjects’ point forecasts and measures of forecast uncertainty

at both horizons using approaches qualitatively identical to those described in Section 2.2.

Economies in both experiments were based on a linearized, three-equation New Keynesian

(NK) model where we eliminate the need for expectations about the output gap, which yields

a dynamical system closed under subjects’ one- and two-period-ahead inflation expectations.

These economies evolved according to subjects’ aggregated expectations and persistent ag-

gregate demand shocks. Each experimental session consisted of seven subjects who formed

individual inflation expectations privately using common information for two independent

sequences of 30 sequential periods each.

At the start of period t, subjects had information about inflation, interest rates, demand

shocks, and their inflation forecasts for all preceding periods. Subjects also knew the value

of the current-period demand shock. In one treatment (NoComm) subjects received no

central bank communication. In the remaining treatments, the central bank communicated

to subjects either a point forecast (Point), a point and density forecast (PointDensity), or

just a density forecast (DensityOnly) of inflation for the next five periods.

Compared to NoComm, Point reduces complexity by providing a precise inflation forecast

to subjects without also conveying the central bank’s forecast uncertainty. Compared to

Point, Point&Density and DensityOnly increase uncertainty because, as shown in the orig-

inal RPU studies, communicating central bank forecast uncertainty can causally increase

individual-level forecast uncertainty. We exploit these exogenous shifts in task complexity
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and uncertainty to quantify the relative importance of task complexity and uncertainty on

rounding behavior in our forecasting task.

Based on this information, subjects formed incentivized inflation forecasts (point and range)

for the next two periods (t + 1 and t + 2) in basis points. Once all subjects provided

forecasts, our software selected median inflation forecasts for t+1 and t+2 as the aggregate

expectations, fed those values into the underlying NK model, provided participants with

information about the realized value of aggregate inflation, and proceeded to the next decision

period.4

The experimental interface was programmed in Redwood. The sessions took place from

October 2019 to October 2021 in physical labs and in online experiments at Texas A&M

University and Simon Fraser University. Subjects were recruited using ORSEE (Greiner

2015) and SONA.

2.2 MRC

MRC data is from McMahon and Rholes (2023), which explores the relationship between a

central bank’s historical forecast performance and the public’s perception of the bank as a

credible inflation forecaster. There are 10,812 decisions total from 1,808 unique subjects in

the MRC data. We collected this data using a series of 20 treatments programmed in oTree

(Chen et al. 2016) and deployed online via Prolific between February and August of 2022

using American subjects.

Participants in this individual-choice experiment acted as atomistic inflation forecasters

tasked with providing two incentivized sets of inflation forecasts (Initial Forecasts and Up-

dated Forecasts) in 3 sequential, independent decision periods. Each set of inflation forecasts

comprised an incentivized point forecast and an incentivized measure of corresponding fore-

cast uncertainty.

Subjects began the experiment by completing a pre-experiment survey that elicited a measure

of economic literacy and self-reported measures of trust and understanding of the Federal

Reserve along a five-point scale. We use this survey data as a way to control for cognitive

ability and other idiosyncratic characteristics when isolating Uτ,i in Equation (1).

4This is a common design feature of learning-to-forecast experiments. See Petersen and Rholes (2022) for
a discussion of how aggregating by averaging instead can lead to unrealistically unstable inflation dynamics.
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Following this, subjects progressed to decision periods. We began each decision period by

revealing a 12-quarter economic history consisting of realized values of inflation alongside

a central bank’s corresponding inflation forecast. Based on this history, subjects submitted

Initial Forecasts. Next, we revealed the central bank’s forecast for the following period and

allowed subjects to update their forecast (Updated Forecasts) based on the central bank’s

forecast. All central bank forecasts in MRC were point forecasts and did not convey the

central bank’s own forecast uncertainty.

For both the Initial and Updated Forecasts, subjects first submitted a point forecast that

we incentivized using a symmetric scoring rule that penalized a subject’s absolute forecast

error. Subjects then provided a range forecast of inflation, which necessarily contained the

subject’s point forecast but was otherwise unrestricted. We incentivized range forecasts using

a piece-wise incentive scheme introduced in Rholes and Petersen (2021). If actual inflation

fell outside a subject’s range forecast, they earned nothing for that range forecast. If actual

inflation was within the bounds of a subject’s range forecast then they earned a positive

payoff that was decreasing in the magnitude of the forecast uncertainty. Economic histories

constituted treatment variation in this experiment, which we exploited to study the causal

relationship between a central bank’s historical forecast performance and its credibility as a

forecaster.

3 Results

We first consider point forecast data for both RPU and MRC, which we show in Figure 1.

The top two panels of Figure 1 depict histograms of point forecasts of one-period-ahead (left)

and two-period-ahead (right) inflation from our RPU data. Participants in RPU sessions

submitted point forecasts at both horizons in terms of basis points (x-axis). The bottom

panel of Figure 1 depicts a histogram of point forecasts of one-period-ahead inflation from

our MRC data. Participants in RPU sessions submitted point forecasts at both horizons in

percentage-point terms (x-axis).

Our primary interest is in whether and how individual-level uncertainty can explain the

heaping we observe in Figure 1. To answer this question, we must first decide what con-

stitutes rounding in our data. To this end, we created four groups of participants in each

experiment. Denote participant i’s inflation forecast in period t for horizon t+h as Ei,tπt+h.

Then a participant rounds if (Ei,tπt+h mod x) = 0 for appropriate values of x. In our MRC
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Figure 1: This figure shows histograms of inflation point forecasts for RPU (panel a) and MRC (panel b)
data.
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data, subjects input forecasts as percentages and could use up to two decimal places. For

this data, we consider - in basis points - xMRC ∈ {25, 50, 100} for h = 1. In our RPU

data, subjects submitted inflation forecasts in basis points as integer values. For this data,

we consider xRPU ∈ {10, 20, 50} for h = 1 and h = 2. Table 1 shows the outcome of this

classification exercise for both MRC and RPU data.5

Table 1: Rounding Decisions and Uncertainty

RPU Data (h=1/h=2)

(1) (2) (3) (4) (5) (6)
Abv. Decisions % % Cum. Mean U. Std. Error U.

No Rounding (rRPU,h
NR ) 8,973 / 8,654 51.78 % / 49.94 % 51.78 % / 49.94 % 19.69/20.98 .22/.24

(Ei,t(πt+h) mod 10) = 0 (rRPU,h
10 ) 2,986 / 3,045 17.23 % / 17.57% 69.02% / 67.52 % 23.12/27.6 .39/.48

(Ei,t(πt+h) mod 20) = 0 (rRPU,h
20 ) 2,756 / 2,478 15.90 % / 14.30 % 84.92% / 81.82% 27.188/30.32 .49/.6

(Ei,t(πt+h) mod 50) = 0 (rRPU,h
50 ) 2,613 / 3,151 15.08 % / 18.18 % 100% 31.40/38.06 .53/.58

MRC Data

(1) (2) (3) (4) (5) (6)
Abv. Decisions % % Cum Mean U. Std. Error U.

No Rounding (rMRC
NR ) 7,244 67 % 67 % 121 1

(Ei,t(πt+1) mod 25) = 0 (rMRC
.25 ) 534 4.94 % 71.94 % 122 3

(Ei,t(πt+1) mod 5) = 0 (rMRC
.5 ) 1,279 11.83 % 83.77 % 131 3

(Ei,t(πt+1) mod 100) = 0 (rMRC
1 ) 1,755 16.23 % 100 % 152 3

This table shows the result of classification at the decision level. There are 10,812 decisions total from 1,808
unique subjects in the MRC data. There are 17,328 decisions total from 584 unique subjects in the RPU
data. Mean values of forecast uncertainty (Mean U.) and corresponding standard errors (Std. Error U.)

are in basis points. Here, (Ei,t(πt+h) mod x) = 0 means that
Ei,t(πt+h)

x ∈ I.

Under uncertainty-driven satisficing, uncertainty should be systematically different across

the rounding classifications (rMRC and rRPU,h). To determine if this is true in our data, we

first consider the cumulative distribution function of forecast uncertainty by rounding groups

for both the RPU and MRC dataFigure 4.6 We see in both data sets a positive relationship

between the coarseness of inflation forecasts and forecast uncertainty.

Using the groups produced by our rounding classification exercise as ordinal measures, we

can determine whether and how individual-level uncertainty helps explain the heaping we

5Discuss difference in scales here.
6We also provide histograms of both individual-level forecast uncertainty and point forecasts in Section 5.1.
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Figure 2: This figure shows cumulative distribution functions of individual-level forecast uncertainty for
different rounding groups from both the RPU (panel a) and the MRC (panel b) data. for the RPU data,
we show CDFs for one-period ahead (left) and two-period-ahead (right) inflation forecasts. For the MRC
data, we show CDFs using pooled data for all histories, and for both initial and updated forecasts. Here,
mod(x,y)=0 indicates that the forecast (x) is a multiple of y (i.e. that a forecast is rounded to y). Vertical
lines are corresponding means.

observe in Figure 1. Table 2 reports results from a series of ordered-Probit regressions using

rRPU,1 (RPU: One-Period-Ahead), rRPU,2 (RPU: Two-Periods-Ahead,) and rMRC (MRC ) as

the dependent variables. We use Ordered-Probit models to estimate the relationship between

ordinal dependent variables (rounding classifications in our case) and a set of independent

variables. This relationship manifests as an underlying score estimated as a linear combina-
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tion of independent variables and a set of cutpoints. This score predicts the probability that

a participant is of a certain ordinal classification (i.e. a certain rounding type).

More concretely, we use an ordered-Probit model to estimate the probability that a partici-

pant p is of classification type j using

Pr(classificationp = j) = Pr(cj−1 < β1x1,p + β12x2,p + ...+ βkxk,p + µp ≤ cj) (2)

where classificationp = j means that participant p is a type-j rounder. Note that this

corresponds to i in rRPU,h
i and in rMRC

i .

In (RPU: One-Period-Ahead), (RPU: Two-Periods-Ahead), andMRC column (1) reports es-

timation results using an empty model. In (RPU: One-Period-Ahead), (RPU: Two-Periods-

Ahead) column (2) includes indicator variables denoting whether a participant received some

form of central bank communication, and column (3) includes controls for most recent re-

alizations of inflation (πt−1) inflation volatility (|πt−1 − πt−2|), a participant’s forecast error

(|Ei,t−h−1(πt−1)− πt−1|), and a demand shock. In MRC, column(2) includes controls for de-

mographics (MALE and Age), a measure of economic literacy (QuizScore), and self-reported

measures of trust and understanding of the Federal Reserve (TrustFed and UnderstandFed,

respectively). Column (3) also includes treatment fixed effects.

Results from all specifications in all three panels of Table 2 indicate that individual-level un-

certainty is a significant determinant of rounding. That is, the probability that a participant

submits a rounded forecast is increasing in her corresponding forecast uncertainty. Further,

the more uncertain a participant is about her forecast, the more likely she is to use a more

coarse point forecast of inflation. Comparing results in (RPU: One-Period-Ahead), (RPU:

Two-Periods-Ahead), we see that this relationship is slightly stronger further into the term

structure of expectations.
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Table 2: What Causes Rounding?

RPU: One-Period-Ahead

(1) (2) (3)
rRPU,1 rRPU,1 rRPU,1

Uncertainty 0.206*** 0.191*** 0.183***
(0.0257) (0.0255) (0.0264)

11[Point] -0.174*** -0.176***
(0.0642) (0.0642)

11[PointDensity] -0.153** -0.164**
(0.0639) (0.0652)

11[DensityOnly] 0.102 0.0433
(0.0834) (0.0815)

|Ei,t−2(πt−1)− πt−1| 0.00112**
(0.000550)

πt−1 -0.000767**
(0.000310)

|πt−1 − πt−2| 0.00213***
(0.000572)

DemandShockt -0.0000459
(0.0000875)

Cut Points

rRPU,1
10 0.0435 -0.0361 0.0610

(0.0273) (0.0463) (0.0484)

rRPU,1
20 0.505*** 0.428*** 0.523***

(0.0239) (0.0446) (0.0469)

rRPU,1
50 1.055*** 0.981*** 1.076***

(0.0265) (0.0450) (0.0478)
N 17328 17328 15999

RPU: Two-Periods-Ahead

(1) (2) (3)
rRPU,2 rRPU,2 rRPU,2

Uncertainty 0.266*** 0.240*** 0.226***
(0.0255) (0.0248) (0.0265)

11[Point] -0.251*** -0.251***
(0.0681) (0.0690)

11[PointDensity] -0.169** -0.179**
(0.0688) (0.0700)

11[DensityOnly] 0.191** 0.135
(0.0845) (0.0842)

|Ei,t−3(πt−1)− πt−1| 0.00102**
(0.000419)

πt−1 -0.000295
(0.000294)

|πt−1 − πt−2| 0.00254***
(0.000442)

DemandShockt -0.000226***
(0.0000828)

Cut Points

rRPU,2
10 -0.00532 -0.0991** 0.0133

(0.0284) (0.0488) (0.0533)

rRPU,2
20 0.467*** 0.378*** 0.494***

(0.0256) (0.0473) (0.0523)

rRPU,2
50 0.939*** 0.855*** 0.970***

17328 17328 15361
N 17328 17328 15361

MRC

(1) (2) (3)
rMRC rMRC rMRC

Uncertainty 0.148∗∗∗ 0.147∗∗∗ 0.151∗∗∗

(0.022) (0.022) (0.022)

MALE 0.003 0.003
(0.046) (0.047)

Age 0.002 0.002
(0.002) (0.002)

QuizScore -0.017 -0.024
(0.022) (0.022)

TrustFed 0.013 0.008
(0.022) (0.022)

UnderstandFed 0.033 0.040∗

(0.021) (0.021)

Cut Points
rMRC
.25 0.441∗∗∗ 0.573∗∗∗ 0.463∗∗∗

(0.023) (0.127) (0.155)

rMRC
.5 0.586∗∗∗ 0.718∗∗∗ 0.609∗∗∗

(0.023) (0.127) (0.156)

rMRC
1 0.990∗∗∗ 1.122∗∗∗ 1.018∗∗∗

(0.023) (0.127) (0.156)
N 9283 9235 9235
Treatment FEs No No Yes

Robust standard errors clustered at the individual level in parentheses.
∗p < .1,∗∗ p < .05,∗∗∗ p < .01
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Overall, results using RPU data suggest two things. First, reducing cognitive complexity

reduces rounding. Second, individual-level uncertainty is a highly significant determinant of

rounding even after we attempt to control for the role of satisficing. When considering the

average forecast uncertainty in our RPU data (23 and 26 basis points for one- and two-period-

ahead forecasts), we can loosely conclude that the effect of individual-level uncertainty on

rounding is about as important as that of removing central bank communication. Results

from MRC indicate that demographics, economic literacy, and understanding and trust of

the Federal Reserve play no role in determining whether a subject rounds her point forecast.

A robust finding in household inflation surveys is that females exhibit significant upward

bias in their inflation expectations relative to men (see Brischetto et al. (1999), D’Acunto

et al. (2020) for survey examples and Burke and Manz (2014) for an experimental example).

Our results suggest that this effect is not caused by gender differences in rounding behavior.

3.1 Comparing Task Complexity and Uncertainty

In this section, we consider how exogenously reducing task complexity or increasing forecast

uncertainty impacts rounding behavior in point forecasts. To do this, we first compare

rounding behavior in our NoComm and 55 Point RPU treatments (task complexity), and

then in Point and Point&Density and DensityOnly treatments (uncertainty).

3.1.1 Task Complexity and Rounding

In this subsection, we explore the impact of task complexity on the rounding behavior of

subjects’ point forecasts. To assess this, we compare two different sets of central bank

communication treatments from our RPU data. First, we compare rounding behavior in our

NoComm and Point treatments. The NoComm treatment lacks central bank communication.

In contrast, the Point treatment features a five-period-ahead point forecast of inflation from

the central bank, which significantly lowers the level of complexity involved in forming a

precise point forecast and therefore ought to reduce rounding, according to Equation (1).

For example, a subject who treats the forecast as fully credible will provide round-number

forecasts only if they coincide with the central bank’s outlook. Our hypothesis is that a

reduction in task complexity, from NoComm to Point, will reduce the probability that a

participant rounds her point forecast of inflation.
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To test this hypothesis, we employ a regression framework that allows us to estimate the

causal impact of task complexity on rounding. Specifically, we define two binary outcome

variables, Rounded1, i and Rounded2, i, representing whether a subject rounds her one-

period-ahead and two-period-ahead inflation forecasts, respectively. The key independent

variable in our analysis is a binary indicator of treatment, Complexityi, which equals 0 for

the NoComm treatment and 1 for the Point treatment.

We estimate the following regression equations separately for one-period-ahead and two-

period-ahead forecasts:

Roundedt+j,i = α + β1Complexity + ϵt+j,i (3)

Roundedt+j,i = α + β1Complexity + γXi+ ϵt+j,i (4)

In Equation (3), Equation (4) Roundedt+j,i is the dependent variable for period t, and

Complexity is the independent variable of interest. The coefficients β1 in both equations

capture the average treatment effect of reducing task complexity on rounding behavior. The

error terms ϵ1,i and ϵ2,i capture unobserved factors influencing rounding behavior that are

not accounted for by treatment assignment. X i represents controls for the magnitude of the

most recent realizations of inflation (πt−1) inflation volatility (|πt−1 − πt−2|), a participant’s

forecast error (|Ei,t−h−1(πt−1) − πt−1|), and the demand shock. Additionally, X i contains

our individual-level measure of forecast uncertainty for the corresponding forecast horizon,

which further ensures ˜Beta1 does not also capture the impact of uncertainty on rounding.

We estimate these regressions using a panel data model appropriate for binary outcome

variables, and we report robust standard errors clustered at the individual level to account

for within-subject correlation over time.

Results (top panel, Table 3) indicate a significant negative relationship between task com-

plexity and the likelihood of rounding. In the simplest model (Column 1), a decrease in task

complexity (moving from NoComm to Point treatment) reduces the probability of rounding

a one-period-ahead forecast by (P < .01). The marginal effect (M.E.) of this reduction is

-8.7% (P < .01). Even when controlling for additional variables that include a subject’s

own forecast uncertainty(Column 3), this negative relationship persists (P < .05) with a

marginal effect of -6.4% (P < .05). This suggests that lower complexity, as experienced in

the Point treatment, significantly reduces the propensity to round forecasts. The effect of
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Table 3: Impact of Task Complexity on Rounding Behavior and Marginal Effects

One-Period-Ahead Forecasts Two-Period-Ahead Forecasts
(1) (2) (3) (4) (5) (6) (7) (8)

Empty M.E. Full M.E. Empty M.E. Full M.E.

Comparing NoComm to Point

Complexity -0.279*** -0.087*** -0.203** -0.064** -0.435*** -0.130*** -0.359*** -0.108***
(0.089) (0.027) (0.087) (0.027) (0.102) (0.030) (0.093) (0.027)

Uncertaintyj=1 0.218***
(0.046)

Uncertaintyj=2 0.242***
(0.050)

Constant 0.024 -0.077 0.151** 0.080
(0.063) (0.063) (0.072) (0.075)

lnsig2u -0.533*** -0.619*** -0.330*** -0.434***
(0.087) (0.097) (0.102) (0.106)

N 9836 9836 9049 9049 9836 9836 8679 8679

Comparing DensityOnly to Point&Density

Complexity -0.361*** -0.108*** -0.285** -0.085** -0.631*** -0.179*** -0.543*** -0.154***
(0.123) (0.036) (0.126) (0.037) (0.135) (0.037) (0.160) (0.044)

Uncertaintyj=1 0.150***
(0.036)

Uncertaintyj=2 0.185***
(0.039)

Constant 0.280** 0.115 0.585*** 0.373***
(0.113) (0.101) (0.116) (0.143)

lnsig2u -0.289** -0.297** -0.155 -0.221*
(0.118) (0.131) (0.098) (0.119)

N 7492 7492 6950 6950 7492 7492 6682 6682

Note: This table estimates the causal impact of task complexity on the likelihood of rounding a point forecast
using a random-effects Probit model. Columns 1-4 present regression results for one-period-ahead forecasts
while 5-8 present results from two-period-ahead forecasts. Even-numbered columns present marginal effects
(M.E.) for the preceding odd-numbered column. Bootstrapped standard errors (100 replications) are shown
in parentheses. * p¡.1, ** p¡.05, *** p¡.01

task complexity on rounding behavior is even more pronounced for two-period-ahead fore-

casts. The reduction in the likelihood of rounding is significant in our empty regressions

(Column 5, p < .01), with a marginal effect of -13.0% (P < .01). This effect remains robust

after including controls (Column 7, p < .01), with a marginal effect of -10.8% (P < .01).

Moreover, the reduction in the likelihood of rounding due to decreased task complexity is

more pronounced for two-period-ahead forecasts compared to one-period-ahead forecasts.
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The marginal effects for two-period-ahead forecasts (-13.0% in the simplest model and -

10.8% in the controlled model) are larger than those for one-period-ahead forecasts (-8.7%

and -6.4% respectively). This suggests that the influence of task complexity becomes more

significant as the forecast horizon lengthens. This is true even after controlling for a partic-

ipant’s subjective forecast uncertainty, suggesting that other complexity-related factors are

at play. One plausible explanation lies in the inherent nature of forecasting over different

horizons. For two-period-ahead forecasts, forecasters face a compounded decision-making

process. They must consider a broader range of variables and potential developments over a

longer horizon, leading to an inherently more complex task. This complexity is multiplica-

tive, in some sense, because the second period’s forecast depends on the outcomes of the first.

Therefore, any simplification provided, such as a precise point forecast from the central bank,

becomes significantly more valuable in reducing cognitive load and aiding decision-making

in these more complex, two-period-ahead forecasts.

Additionally, we compare rounding behavior in our Point&Density and DensityOnly treat-

ments. These two treatments, similar to our NoComm versus Point comparisons, differ only

in whether inflation forecasts provided by the central bank contain a precise point forecast.

However, different from our first comparison, these two treatments both feature central bank

inflation forecasts that convey an identical, non-zero level of inflation forecast uncertainty.

We again rely on Equation (3), Equation (4) Roundedt+j,i where Complexityi, equals 0 for

our DensityOnly treatment and 1 for the Point&Density treatment. Our hypothesis is that a

reduction in task complexity, from DensityOnly to Point&Density, will reduce the probability

that a participant rounds her point forecast of inflation (i.e. β̂1 < 0).

Results from this exercise (bottom panel, Table 3) again indicate a significant negative

relationship between task complexity and the likelihood of rounding. In the simplest model

(Column 1), a decrease in task complexity (moving from NoComm to Point treatment)

reduces the probability of rounding a one-period-ahead forecast by (P < .01). The marginal

effect of this reduction is -10.8% (P < .01). This effect is robust (Column 3, p < .05), with

a marginal effect of -8.5% (P < .05). Again, we find a significant reduction in the likelihood

of rounding at the longer forecast horizon (Column 5, p < .01), with a marginal effect of

-17.9% (P < .01). This effect remains robust after including controls (Column 7, p < .01),

with a marginal effect of -15.4% (P < .01).

The comparison between DensityOnly and Point&Density is particularly revealing. Unlike

the NoComm treatment, which represents a complete lack of central bank communication,
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the DensityOnly treatment still contains a non-zero level of uncertainty. The additional

reduction in rounding observed in the Point&Density treatment suggests that the presence

of a point forecast has a more pronounced effect on reducing rounding when there is already

some level of uncertainty communicated. This could imply that in the presence of inherent

uncertainty, a point forecast serves as a more concrete anchor for forecasts, thereby reducing

the tendency to resort to rounding as a heuristic.

3.1.2 Uncertainty and Rounding

To do this, we first regress the potentially endogenous variable, uncertainty, on the instru-

ment, CommType.

Uncertaintyt,i = α + β1CommTypei + γ3X i + εi (5)

where CommType = 0 for Point and CommType = 1 for Point&Density treatment. We

restrict focus to these two treatments for simplicity, since we know that introducing pre-

cise central bank communication into the RPU forecast task causally reduces participants’

individual-level forecast uncertainty relative to baseline treatments with no central bank

communication (Rholes and Petersen 2021, Petersen and Rholes 2022). This satisfies the

corresponding exclusion restriction because CommType is a randomly-assigned, exogenous

manipulation.

Equation (5) projects our potentially endogenous variable of interest onto the space spanned

by our instrument variable, CommType, and controls X i. Thus, εi captures the unobserved

factors influencing Uncertainty that could also be affecting rounding behavior. These residu-

als are, by construction, orthogonal to our instrument and other control variables, capturing

only the variation in Uncertainty that is not explained by these factors. Including these

residuals Equation (6) allows us to control for this endogenous variation, ensuring that our

estimates of our coefficient of interest, gamma1 are unbiased and consistent.

Using these predicted residuals from the first stage, we can use dynamic Probit estimation

where our outcome of interest is whether a subject rounded her one-period-ahead (t=1) or

two-period-ahead (t=2) point forecast of inflation.
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Table 4: Impact of Uncertainty on Rounding Behavior and Marginal Effects

One-Period-Ahead Forecasts Two-Period-Ahead Forecasts
No Controls M.E. Controls M.E. No Controls M.E. Controls M.E.

Uncertainty 0.419** 0.131** 0.380* 0.118* 0.607*** 0.185*** 0.569** 0.172**
(0.209) (0.065) (0.225) (0.069) (0.230) (0.069) (0.247) (0.074)

Residuals -0.236 -0.204 -0.411* -0.386
(0.209) (0.223) (0.227) (0.246)

Constant -0.131*** -0.265*** -0.105** -0.239***
(0.049) (0.071) (0.051) (0.082)

lnsig2u -0.567*** -0.517*** -0.435*** -0.391***
(0.098) (0.098) (0.099) (0.107)

N 9976 9976 8914 8914 9976 9976 8914 8914

Bootstrapped standard errors (500 repetitions) in parentheses

∗p < .1, ∗ ∗ p < .05, ∗ ∗ ∗p < .01

Pr(Roundedt,i = 1) = Φ(γ0 + γ1Uncertaintyt,i + γ2ϵt,i + γ3X t,i) (6)

Where Roundedt,i is a binary variable capturing whether a subject rounded her forecast and

X i represents controls for the magnitude of the for the most recent realizations of inflation

(πt−1) inflation volatility (|πt−1−πt−2|), a participant’s forecast error (|Ei,t−h−1(πt−1)−πt−1|),
and the demand shock. We report results from this estimation procedure in ??.

In the analysis of one-period-ahead forecasts, the positive and significant coefficients for

”Uncertainty” in both the uncontrolled (Column 1) and controlled models (Column 3) in-

dicate that an increase in forecast uncertainty leads to a higher likelihood of rounding.

The marginal effects quantitatively support this observation, revealing an increase in the

likelihood of rounding by 13.1% (P < .05) and 11.8% (P < .1) in the respective models.

The impact of uncertainty on rounding behavior is further pronounced in the context of

two-period-ahead forecasts. Here again, the positive relationship between uncertainty and

rounding is evident, with the likelihood of rounding increasing by 18.5% (P < .01) and

17.2% (P < .05) in the uncontrolled and controlled models (Columns 5 and 7), respectively.

These larger marginal effects for two-period-ahead forecasts, compared to one-period-ahead

forecasts, underscore the compounding effect of uncertainty over longer forecast horizons.
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4 Discussion and Conclusion

The phenomenon of heaping in survey and task data, often manifested as rounding in re-

sponses, presents a critical challenge across various scientific disciplines. This study con-

tributes to the longstanding discourse regarding heaping by further dissecting the under-

lying causes behind this phenomenon, particularly focusing on the roles of complexity and

uncertainty. Through a series of experiments that capture individually-linked, incentivized

measures of inflation expectations and corresponding forecast uncertainty, we delve into the

relationship between individual-level forecast uncertainty and the propensity to round point

forecasts.

Our findings reveal a robust and statistically significant relationship between forecast uncer-

tainty and rounding behavior. This relationship holds even after accounting for factors such

as the cognitive complexity of the forecasting task, demographics, economic literacy, and

participants’ trust and understanding of central banks. Notably, our analysis underscores

the importance of uncertainty as a determinant of rounding, independent of task complexity.

The implication is clear: in environments where individual-level uncertainty is prevalent, re-

sponses tend to skew towards rounded or salient figures, suggesting a heuristic approach to

dealing with uncertain scenarios.

Additionally, we establish that the reduction in task complexity, achieved through varying

degrees of central bank communication, causally impacts rounding behavior independent of

uncertainty. This finding is crucial as it suggests that both the simplification of tasks and the

presence of uncertainty are separate yet significant determinants of how individuals approach

forecasting tasks.

Furthermore, the study reveals that the impact of both task complexity and uncertainty on

rounding behavior is more pronounced for longer-term forecasts. This nuanced understand-

ing underscores the layered nature of decision-making processes, particularly in economic

forecasting, where the compounding effects of uncertainty and task complexity over time

play a pivotal role. Moreover, our study sheds light on how this rounding behavior varies

with the forecast horizon. The impact of uncertainty on rounding is more pronounced for

longer-term forecasts, underscoring the compounding nature of uncertainty over time. This

finding has significant implications for the design and interpretation of economic forecasts

and surveys. It highlights the need for careful consideration of the underlying uncertainty

and suggests that strategies to manage or communicate this uncertainty could be crucial in
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enhancing the accuracy and reliability of economic predictions.

Binder (2017) reports that more than 41% of point inflation forecasts are rounded to the

nearest 5% level in data from the Michigan Survey of Consumers and 48% of numerical survey

responses exhibit rounding in an average month over the same period. Reiche and Meyler

(2022) document that the average level of rounded responses in the European Commission

Consumer Survey (ECCS) from 2004 through 2020 has been around 70%. We see that

approximately 30% of inflation responses are rounded in our MRC data and about 50%

in our RPU data. Thus, we observe a comparable level of rounding in both experimental

frameworks we consider here (RPU and MRC), even though our subjects face marginal

incentives.

Additionally, we see in our data that rounders often form more extreme expectations than

non-rounders, which aligns with Reiche and Meyler (2022), who show empirically that round-

ing in ECCS survey data can lead to average inflation expectations that consistently over-

estimate inflation. This matches with evidence from Monte Carlo simulations that suggest

rounding leads to higher average inflation expectations.

To show this, we average over 1,000 simulations, each comprising a sample size of 2,000

individual forecasts where inflation forecasts follow a lognormal distribution. To simulate

the heaping effects often seen in survey responses, we clone inflation data and then introduce

rounding into the date using two rounding schemes based on a random uniform distribution

that round approximately thirty percent of forecasts to the nearest multiple of five and

another twenty percent to the nearest multiple of ten. We chose the extent of rounding

in our simulation to approximate the level of heaping found in actual survey data and our

experimental data. Importantly, these rounding mechanisms feature no upward rounding

bias. This approach allows us to compare the genuine distribution of inflation forecasts with

their rounded counterparts.

Our findings indicated that rounding results in a significantly higher average expected infla-

tion whenever we choose mean and variance parameters so that the underlying, non-heaped

mean inflation expectations are close to average U.S. inflation from roughly 2005 through

2020 (see Figure 6 for kernel density functions of heaped and non-heaped inflation expec-

tations from all simulations and Figure 7 for the corresponding cumulative distribution

functions of mean inflation expectations from the individual simulations). This is also true

if we increase these parameters to produce higher expected inflation and higher variance in

the non-heaped data (see Figure 8 and Figure 9). However, it is also possible that heaping
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could lead to underestimating inflation whenever mean inflation in the non-heaped data is

sufficiently close to zero, suggesting that surveys could lead policymakers to believe mean

expected inflation is too pessimistic during prolonged episodes of sufficiently low inflation

(see Figure 10 and Figure 11).

This evidence also brings to light a critical issue in survey-based research: the reliability

of statistical measures derived from heaped data. Heaping can potentially distort both the

mean expectations and the sample variance. Such misrepresentations can lead to incorrect

standard errors and, consequently, affect the accuracy of coefficient estimates. This distortion

is particularly problematic in survey data, where decision-making often relies on precise

statistical analyses. Thus, understanding and accounting for heaping effects is essential

for accurate data interpretation and making informed inferences from survey results. This

highlights the importance of considering data quality and handling practices in survey-based

research to ensure validity and reliability.
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5 Appendix

5.1 Additional Figures
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Figure 3: This figure shows cumulative density functions (CDFs) of individual-level forecast
uncertainty before (left) and after (right) the central bank publishes its own point projection.
‘Round’ means a subject rounded for only the corresponding inflation forecast. ‘Round Both’
means the subject rounded when providing both the initial and updated forecasts for that history.
We define a rounder as any subject i where (Ei,tπt+1 mod 1)=0.
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Figure 4: This figure shows histograms of individual-level forecast uncertainty for RPU (panel a)
and MRC (panel b) data.

24



0
1

2
3

4
D

en
si

ty

0 2 4 6
Early

0 2 4 6
Consistent

3 4 5 6
Late

Histograms of Inflation Forecasts by History

Black dashed lines denote central bank's point forecast

Figure 5: This figure shows histograms of point forecasts for Early, Consistent, and Late.

0

.2

.4

.6

.8

1

D
en

si
ty

0 2 4 6 8 10
Inflation Expectation (%)

Non-Heaped Data Heaped Data

Kernel Density of Inflation Forecasts

Figure 6: Kernel density functions of inflation expectations - Low mean and variance

25



0

.2

.4

.6

.8

1

C
.D

.F
.

2.6 2.8 3 3.2 3.4
Mean Expected Inflation

Heaping No Heaping

Figure 7: Cumulative density functions of average expected inflation across simulations - Low
mean and variance
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Figure 8: Kernel density functions of inflation expectations - Higher mean and variance
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Figure 9: Cumulative density functions of average expected inflation across simulations - Higher
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Figure 10: Kernel density functions of inflation expectations - nearly-zero mean with low variance
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Figure 11: Cumulative density functions of average expected inflation across simulations - nearly-
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5.2 Additional Tables

5.3 Reclassifying 0s in RPU data

Because the stochastic steady state in the RPU experiments is zero, inflation outcomes in

that data are often close to zero. Because of this, it is unclear exactly how we ought to

classify subjects in that setting who forecast inflation to be exactly 0. For example, these

may be rational forecasters. On the other hand, a forecast of zero aligns with any of our

rounding classifications.

In our main analysis, these subjects are classified rRPU,h
50 . Section 5.3 shows the frequency

of these sorts of forecasts in the RPU data. However, we might also consider giving these

subjects their own unique classification. To do this, we add a fourth rounding category for

our RPU data – rRPU,h
0 for any forecast of inflation being exactly equal to zero at the t+ h

horizon.

Table 5: Rounding Decisions and Uncertainty - Reclassifying Zeros

RPU Data (h=1/h=2)

(1) (2) (3) (4) (5) (6)
Abv. Decisions % % Cumulative. Mean Std. Error

No Rounding (rRPU,h
NR ) 8,973 / 8,654 51.78 % / 49.94 % 51.78 % / 49.94 % 19.69/20.98 .22/.24

(Ei,t(πt+h) = 0 (rRPU,h
0 ) 2,986 / 3,045 17.23 % / 17.57% 69.02% / 67.52 % 23.12/27.6 .39/.48

(Ei,t(πt+h) mod 10) = 0 (rRPU,h
10 ) 2,986 / 3,045 17.23 % / 17.57% 69.02% / 67.52 % 23.12/27.6 .39/.48

(Ei,t(πt+h) mod 20) = 0 (rRPU,h
20 ) 2,756 / 2,478 15.90 % / 14.30 % 84.92% / 81.82% 27.188/30.32 .49/.6

(Ei,t(πt+h) mod 50) = 0 (rRPU,h
50 ) 2,613 / 3,151 15.08 % / 18.18 % 100% 31.40/38.06 .53/.58

This table shows the result of classification at the decision level in the RPU data where an inflation forecast
of zero receives its own classification. There are 17,328 decisions total from 584 unique subjects in the RPU
data. Mean values and corresponding standard errors are in basis points. Here, (Ei,t(πt+h) mod x) = 0

means that
Ei,t(πt+h)

x ∈ I.
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Figure 12: This figure shows cumulative distributions functions of individual-level forecast uncertainty for
different rounding groups from the RPU data where we include a unique classification for inflation forecasts
of zero.
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